MJ11021(PNP) MJ11022 (NPN)

Complementary Darlington Silicon Power Transistors

Complementary Darlington Silicon Power Transistors are designed for use as general purpose amplifiers, low frequency switching and motor control applications.

Features

- High dc Current Gain @ 10 Adc $h_{FE} = 400$ Min (All Types)
- Collector–Emitter Sustaining Voltage V_{CEO(sus)} = 250 Vdc (Min) – MJ11022, 21
- Low Collector–Emitter Saturation
 - $V_{CE(sat)} = 1.0 V (Typ) @ I_C = 5.0 A$ = 1.8 V (Typ) @ I_C = 10 A
- 100% SOA Tested @ $V_{CE} = 44 V$

 $I_C = 4.0 \text{ A}$ t = 250 ms

• Pb–Free Packages are Available*

MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

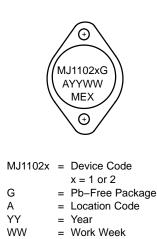
Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	250	Vdc
Collector-Base Voltage	V _{CBO}	250	Vdc
Emitter-Base Voltage	V _{EBO}	50	Vdc
Collector Current – Continuous – Peak (Note 1)	Ι _C	15 30	Adc
Base Current	Ι _Β	0.5	Adc
Total Power Dissipation @ T _C = 25°C Derate Above 25°C	P _D	175 1.16	W W/∘C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +175 -65 to +200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	0.86	°C/W

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

1. Pulse Test: Pulse Width = 5 ms, Duty Cycle \leq 10%.


ON Semiconductor®

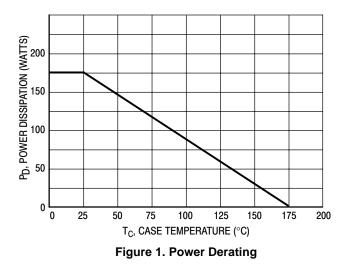
http://onsemi.com

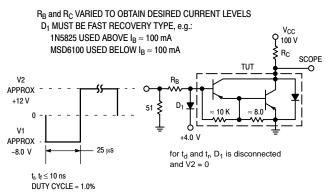
15 AMPERE COMPLEMENTARY DARLINGTON POWER TRANSISTORS 250 VOLTS, 175 WATTS

TO-204 (TO-3) CASE 1-07 STYLE 1

MARKING DIAGRAM

MEX = Country of Orgin


ORDERING INFORMATION


Device	Package	Shipping
MJ11021	TO-3	100 Units/Tray
MJ11021G	TO-3 (Pb-Free)	100 Units/Tray
MJ11022	TO-3	100 Units/Tray
MJ11022G	TO–3 (Pb–Free)	100 Units/Tray

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

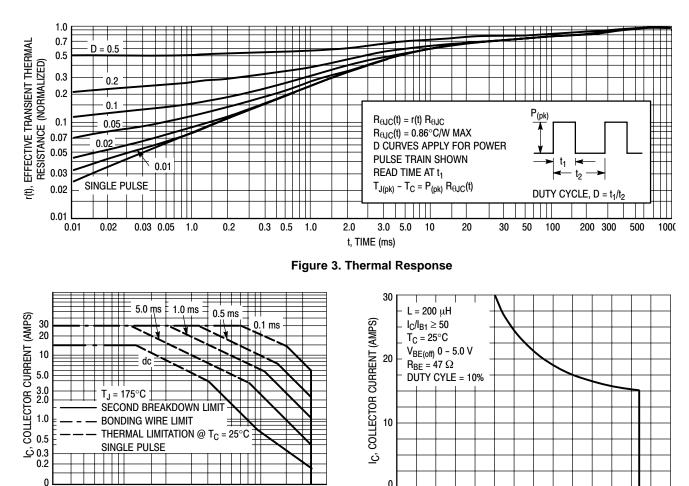
MJ11021(PNP)

MJ11022 (NPN)

For NPN test circuit reverse diode and voltage polarities.

Figure 2. Switching Times Test Circuit

ELECTRICAL CHARACTERISTICS (1 _C = 25°C unless otherwise noted)	


Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS			•	•	
Collector–Emitter Sustaining Voltage (Note 1) $(I_C = 0.1 \text{ Adc}, I_B = 0)$	MJ11021, MJ11022	V _{CEO(sus)}	250	-	Vdc
Collector Cutoff Current ($V_{CE} = 125$, $I_B = 0$)	MJ11021, MJ11022	I _{CEO}	-	1.0	mAdc
$ Collector Cutoff Current \\ (V_{CE} = Rated V_{CB}, V_{BE(off)} = 1.5 Vdc) \\ (V_{CE} = Rated V_{CB}, V_{BE(off)} = 1.5 Vdc, T_J = 150^{\circ}C) $		ICEV		0.5 5.0	mAdc
Emitter Cutoff Current ($V_{BE} = 5.0 \text{ Vdc}, I_C = 0$)		I _{EBO}	-	2.0	mAdc
ON CHARACTERISTICS (Note 1)					
DC Current Gain (I _C = 10 Adc, V_{CE} = 5.0 Vdc) (I _C = 15 Adc, V_{CE} = 5.0 Vdc)		h _{FE}	400 100	15,000	-
Collector–Emitter Saturation Voltage ($I_C = 10 \text{ Adc}, I_B = 100 \text{ mA}$) ($I_C = 15 \text{ Adc}, I_B = 150 \text{ mA}$)		V _{CE(sat)}		2.0 3.4	Vdc
Base-Emitter On Voltage $I_C = 10 A, V_{CE} = 5.0 Vdc)$		V _{BE(on)}	-	2.8	Vdc
Base-Emitter Saturation Voltage ($I_C = 15 \text{ Adc}, I_B = 150 \text{ mA}$)		V _{BE(sat)}	-	3.8	Vdc
DYNAMIC CHARACTERISTICS					
Current–Gain Bandwidth Product ($I_C = 10 \text{ Adc}, V_{CE} = 3.0 \text{ Vdc}, f = 1.0 \text{ MHz}$)		[h _{fe}]	3.0	-	Mhz
Output Capacitance (V _{CB} = 10 Vdc, I_E = 0, f = 0.1 MHz)	MJ11022 MJ11021	C _{ob}		400 600	pF
Small–Signal Current Gain		h _{fe}	75	-	-

(I_C = 10 Ådc, V_{CE} = 3.0 Vdc, f = 1.0 kHz) SWITCHING CHARACTERISTICS

			Тур	ical	
	Characteristic	Symbol	NPN	PNP	Unit
Delay Time		t _d	150	75	ns
Rise Time	$(V_{CC} = 100 \text{ V}, I_{C} = 10 \text{ A}, I_{B} = 100 \text{ mA}$	tr	1.2	0.5	μs
Storage Time	$(V_{CC} = 100 \text{ V}, I_C = 10 \text{ A}, I_B = 100 \text{ mA}$ $V_{BE(off)} = 50 \text{ V}) \text{ (See Figure 2)}$	t _s	4.4	2.7	μS
Fall Time		t _f	10.0	2.5	μS

1. Pulsed Test: Pulse Width = 300 $\mu s,$ Duty Cycle $\leq\,$ 2%.

MJ11021(PNP) MJ11022 (NPN)

5.0 7.0 10 20 30 50 70 100 150200 V_{CE}, COLLECTOR-EMITTER VOLTAGE (VOLTS)

Figure 4. Maximum Rated Forward Bias Safe Operating Area (FBSOA)

FORWARD BIAS

3.0

There are two limitations on the power handling ability of a transistor average junction temperature and second breakdown. Safe operating area curves indicate $I_C - V_{CE}$ limits of the transistor that must be observed for reliable operation, i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 4 is based on $T_{J(pk)} = 175^{\circ}C$, T_C is variable dependIng on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)} \le 175^{\circ}C$. $T_{J(pk)}$ may be calculated from the data in Figure 3. At high case temperatures thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

V_{CE}, COLLECTOR-EMITTER VOLTAGE (VOLTS) Figure 5. Maximum RBSOA, Reverse Bias Safe Operating Area

140

180

220

260

REVERSE BIAS

20

0

60

100

For inductive loads, high voltage and high current must be sustained simultaneously during turn–off, in most cases, with the base to emitter junction reverse biased. Under these conditions the collector voltage must be hold to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as Reverse Bias Safe Operating Area and represents the voltage–current conditions during reverse biased turn–off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 5 gives ROSOA characteristics.

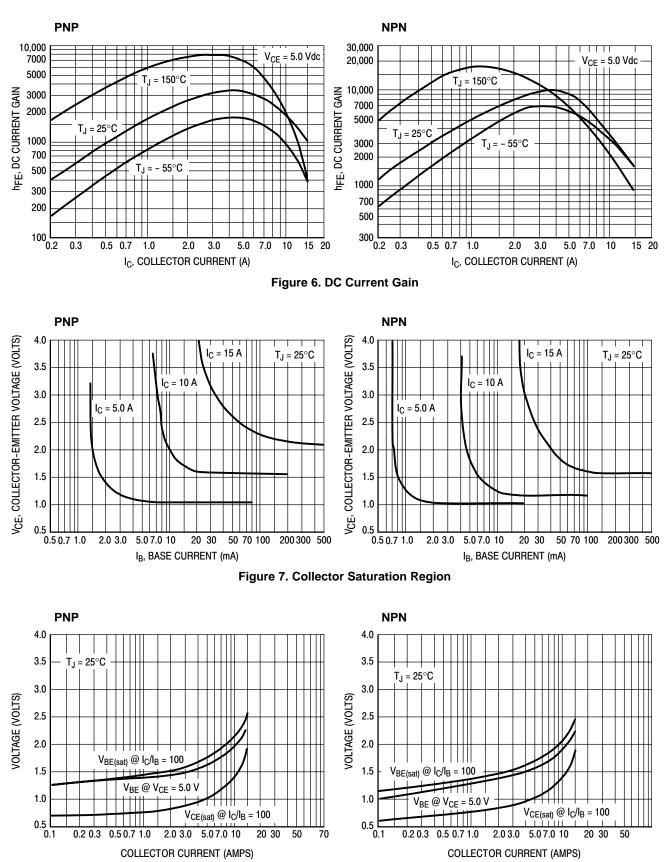
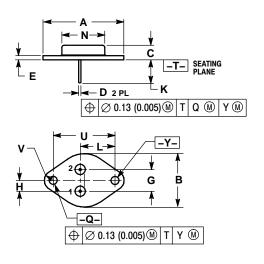



Figure 8. "On" Voltages

PACKAGE DIMENSIONS

TO-204 (TO-3) CASE 1-07 ISSUE Z

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14 5M 1982

Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

3. ALL RULES AND NOTES ASSOCIATED WITH REFERENCED TO-204AA OUTLINE SHALL APPLY.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	1.550 REF		39.37 REF	
В		1.050		26.67
С	0.250	0.335	6.35	8.51
D	0.038	0.043	0.97	1.09
Е	0.055	0.070	1.40	1.77
G	0.430 BSC		10.92 BSC	
н	0.215	BSC	5.46	BSC
κ	0.440	0.480	11.18	12.19
Г	0.665 BSC		16.89 BSC	
N		0.830		21.08
Ø	0.151	0.165	3.84	4.19
U	1.187	BSC	30.15 BSC	
٧	0.131	0.188	3.33	4.77

STYLE 1: PIN 1. BASE 2. EMITTER CASE: COLLECTOR

ON Semiconductor and IIII are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use persons, and reasonable attorney fees andising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use persons and sensing out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized to applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.